Envision Cambridge

Climate & Environment Working Group: Session 1 May 8, 2017

ENVISION CAMBRIDGE

utile

City of Cambridge

Process Overview

Existing Conditions

Issues, Goals, and Opportunities

Process Overview

utile

Project Framework

Climate and Environment Working Group's Role

Six working groups will provide input to the Envision Cambridge Advisory Committee for plan development.

City of Cambridge

Envision Cambridge

utile

Climate and Environment Working Group: Session 1

rking Group: Session 1 May 8, 2017

envision.cambridgema.gov

Spring/Summer 2017 Working Group Schedule

Vision & Core Values

"Cambridge is a forward-thinking, welcoming, and diverse city. We enjoy a high quality of life and thrive in a sustainable, inclusive, and connected community."

utile

Cambridge has a robust foundation for climate & environment planning

Advisory Committees

- Transit Advisory Committee
- Pedestrian Committee
- Bicycle Committee
- Climate Protection Action Committee (CPAC)
- Community Health Improvement Plan Steering Committee (co-chair)
- Recycling Advisory Committee

Goals and Plans

- CPAC Goals and Objectives
- E&T Strategic Plan
- Net Zero Action Plan
- Climate Vulnerability Assessment and Preparedness Plan
- Cambridge Bike Plan
- Cambridge Transit Plan
- Pedestrian Plan

Collaborations/Frameworks

- Compact for a Sustainable Future
- Kendall Square EcoDistrict
- Compact of Mayors
- STAR Community Rating

Overview	Energy &	Emissions	Water & Flooding	Air Quality	Trees & Nat	. Ecology	Materials & Wa	aste
City of Cambridge	utile	Envision Camb	ridge Climate and Envir	onment Working Group: Session 1	May 8, 2017	envision.cam	nbridgema.gov	10

Cambridge outperforms peer cities on sustainability initiatives, having achieved the highest-ever STAR Communities assessment score

Source: Star Communities, 50 Certified STAR Communities report (2016)

Cambridge's built environment enables environmentally friendly lifestyle choices

Dense, mixed use neighborhoods

Robust options for transit and non-motorized transportation

However, sustainability is not felt equally from household-to-household or neighborhood-to-neighborhood, and there is still much to do to fulfill the City's ambitions

Source: City of Cambridge (tree canopy), MassGIS (roads, water, boundary), Google

Overview	Energy & I	Emissions	Water & Flooding	Air Quality	Trees & Nat.	. Ecology	Materials & Waste	;
City of Cambridge	utile	Envision Cambr	ridge Climate and Enviro	nment Working Group: Session 1	May 8, 2017	envision.cam	nbridgema.gov	13

(21)

Energy use in buildings accounts for more than 80% of GHG emissions

Today, New England's electricity supply comes from one of the nation's cleaner grids

• There have been drastic reductions in electricity generation from oil and coal-fired power plants, which accounted for 22% and 18% of the grid mix in 2000, respectively.

- Those have largely been replaced by natural gas-fired power plants. Natural gas produces fewer GHG emissions relative to other fossil fuels; its growth has been fueled by low commodity prices.
- Nuclear power, a carbon-free source of electricity, will decrease in the future as plants retire.
- Renewables have experienced modest growth to-date but are poised for rapid growth in the coming years.

Source: NPCC New England Subregion Resource Mix (eGRID2014v2)

Overview	Energy &	& Emissions	Water & Flooding	Air Quality	Trees & Nat.	Ecology	Materials & Waste	
City of Cambridge	utile	Envision Camb	ridge Climate and Enviro	nment Working Group: Session 1	May 8, 2017	envision.caml	bridgema.gov	15

Renewables will play an even larger role in the future of the New England grid

Projected Grid Mix and Carbon Intensity

- The Commonwealth's Renewable Portfolio Standard (RPS) calls for 15% of generation from new renewable energy sources by 2020 and an additional 1% each year thereafter
- The 2016 Energy bill (H.4568: An Act Relative to Energy Diversity) is expected to spur development of offshore wind and large-scale solar photovoltaic systems
- The new Solar Massachusetts Renewable Target (SMART) program, expected to start in early 2018, provides resources to double the Commonwealth's existing solar capacity
- Additional incentives available for solar projects in lowincome neighborhoods, promoting equitable access to the benefits of clean energy

Source: NPCC New England Subregion Resource Mix (eGRID2014v2); BuroHappold analysis assuming linear implementation of the Massachusetts RPS

Overview	Energy a	& Emissions	Water & Flooding		Air Quality		Trees & Nat. Ecology		Materials & Was	ste
City of Cambridge	utile	Envision Cam	bridge Climate and Envir	ronm	ent Working Group: Session 1	Ν	May 8, 2017 envisio	n.camb	oridgema.gov	16

Locally, rooftop solar installations have been increasing steadily for two decades

Cambridge's Solar PV Capacity

- Approximately 4.5 MW of solar PV systems were installed in Cambridge as of January 2016
- The technical potential for solar PV systems is estimated to be as high as 307 MW, which would generate approximately 20% of Cambridge's annual electricity usage (based on *current* consumption patterns)

Source: Cambridge Energy Alliance (left); Getting to Net Zero Appendix F (right)

Overview	Energy &	& Emissions	Water & Flooding	Air Quality	Trees & Nat	. Ecology Materials &	. Waste
City of Cambridge	utile	Envision Camb	oridge Climate and Environr	nent Working Group: Session 1	May 8, 2017	envision.cambridgema.gov	17

However, we primarily rely upon fossil fuels to heat our buildings; natural gas constitutes 60% of stationary energy consumption in Cambridge

Stationary Energy Consumption in Cambridge

Source: Cambridge GHG Emissions Inventory

Overview	Energy	& Emissions	Water & Flooding		Air Quality	Trees & Nat. Ecology		Materials & Waste	
City of Cambridge	utile	Envision Can	abridge Climate and Envir	onm	nent Working Group: Session 1	May 8, 2017 envision	n.can	nbridgema.gov	18

Climate change will result in milder winters and hotter summers

Projected Annual Heating and Cooling Degree Days

2070

Source (right): Petri, Y. and Caldeira, K. Impacts of global warming on residential heating and cooling degree-days in the United States (2015), and BuroHappold analysis

			dan Climata and Environ	amont Working Croup: Soccion 1	Mov 8, 2017		
Overview	Energy &	& Emissions	Water & Flooding	Air Quality	Trees & Nat	Ecology Mater	ials & Waste

Extreme heat events are projected to increase in frequency and severity

- Number of days over 90 degrees will nearly triple by 2030
- 2. Heat waves projected to be more likely and frequent
- 3. Especially significant for vulnerable populations without access to cooling options

S	М	T	w	T	F	S	S	М	Т	w	T	F
1	2	3	4	5	6	7	1	2	3	4	5	6
8	9	10	11	12	13	14	8	9	10	11	12	13
15	16	17	18	19	20	21	15	16	17	18	19	20
22	23	24	25	26	27	28	22	23	24	25	26	27
29	30	1	2	3	4	5	29	30	1	2	3	4
6	7	8	9	10	11	12	6	7	8	9	10	11
13	14	15	16	17	18	19	13	14	15	16	17	18
20	21	22	23	24	25	26	20	21	22	23	24	25
27	28	29	30	31	1	2	27	28	29	30	31	1
3	4	5	6	7	8	9	з	4	5	6	7	8
10	11	12	13	14	15	16	10	11	12	13	14	15
17	18	19	20	21	22	23	17	18	19	20	21	22
24	25	26	27	28	29	30	24	25	26	27	28	29

S	М	T	w	T	F	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

S

12

19

26

9 16

23

30

Source: Kleinfelder, City of Cambridge Climate Change Preparedness & Resiliency (CCPR) Plan, November 2016

	Overview	Energy &	& Emissions	Water & Flooding		Air Quality	Trees & Nat	t. Ecology	Materials & V	Waste
3	City of Cambridge	utile	Envision Camb	oridge Climate and Envir	ronn	nent Working Group: Session 1	May 8, 2017	envision.can	nbridgema.gov	20

Meanwhile, hotter summers will increase cooling demands and place strain on the electrical grid

In order to meet summer peak demands, a renewables-based grid will require the use of fast-ramping natural gas turbines or large-scale energy storage (in addition to distributed energy resources). Simultaneously, residential energy reduction strategies (behavioral DR, dynamic pricing, "bring your own thermostat" programs) will help with peak shaving.

Sources (left chart): Petri, Y. and Caldeira, K. Impacts of global warming on residential heating and cooling degree-days in the United States (2015), and BuroHappold analysis

	Overview	Energy &	& Emissions	Water & Flooding	Air Quality	Trees & Nat.	. Ecology	Materials & Wast	e
C	City of Cambridge	utile	Envision Camb	ridge Climate and Environ	ment Working Group: Session 1	May 8, 2017	envision.cambrid	dgema.gov	21

(21)

Cantabrigians are moving away from single occupancy vehicles and towards lowcarbon modes. However, passenger vehicles still account for 82% of transportrelated emissions.

22

envision.cambridgema.gov

2015)

(21)

City

The Cambridge Water Department has been proactive in minimizing contamination threats to the city's water supply; drought has emerged as an unexpected issue.

• Source: City of Cambridge Water Department, Drinking Water Quality Reports (2007-

- Water shortage has emerged as a surprise issue; the City had to switch to using MWRA water for a significant part of the past year (at great expense)
- Because of the developed nature and types of land uses within the Cambridge watershed, the city's source waters are considered as having "high" susceptibility to contamination.
- In 2011, the Cambridge Water Department updated its comprehensive Source Water Protection Program, which includes:
 - Extensive monitoring
 - Hazardous materials emergency response planning
 - Partnership development with other parties in the watershed
 - Proactive site review and monitoring
 - Stormwater management
 - Community outreach

Overview	Energy & I	Emissions	Water & Flooding	Air Quality	Trees & Nat	. Ecology	Materials &	z Waste
of Cambridge	utile	Envision Cambri	idge Climate and Environ	ment Working Group: Session 1	May 8, 2017	envision.cam	nbridgema.gov	23

As a result, drinking water quality meets and exceeds all state and federal standards.

Source: City of Cambridge Water Department, Drinking Water Quality Reports (2007-2015)

Overview	Energy &	& Emissions	Water & Flooding	Air Quality	Trees & Nat	. Ecology	Materials & V	Waste
City of Cambridge	utile	Envision Camb	ridge Climate and Envir	onment Working Group: Session 1	May 8, 2017	envision.cam	nbridgema.gov	24

Water quality in the Charles River and Mystic River / Alewife Brook have improved over time thanks to infrastructure investments and reduced CSO discharges

- Water quality is a key priority for the City, and work to date to improve stormwater management has made significant improvements for the Charles River and Mystic River / Alewife Brook
- Non-point source pollution continues to be the biggest problem for Alewife Brook
 - Deposition of fertilizers, herbicides, oil, grease, salt, bacteria from animal waste and sediments, especially from construction sites are the most common consequences of non-point source pollution
- CSO events can still occur and discharge untreated sewerage

The occurrence of high volume rain storms is predicted to increase in the future, resulting in increased likelihood and extent of flooding

Source: Kleinfelder, City of Cambridge Climate Change Vulnerability Assessment Report Part 1, November 2015

Overview	Energy &	& Emissions	Water & Flooding		Air Quality	,	Trees & Nat. Ecology	Materials &	Waste
City of Cambridge	utile	Envision Cambr	idge Climate and Enviro	onm	ent Working Group: Session 1	Ma	ay 8, 2017 envision.	cambridgema.gov	26

(27)

In the near term, the largest concern is overland flooding from precipitation, particularly in Alewife...


```
Existing Conditions
```

...with inundation increasing in severity by 2030s...

...and further, to the 2070s

Additionally, models predict up to 8 inches of sea level rise by 2030,.....

Source: Kleinfelder, City of Cambridge Climate Change Vulnerability Assessment Report Part 1, November 2015; NOAA (2012). Global Sea Level Rise Scenarios for the United States National Climate Assessment

OverviewEnergy & EmissionsWater & FloodingAir QualityTrees & Nat. EcologyMaterials & WasteImage: City of CambridgeUtileEnvision CambridgeClimate and Environment Working Group: Session 1May 8, 2017envision.cambridgema.gov30

..., which will especially impact historic tidal marshland areas after 2030

Historic tidal marshland map of Cambridge - "The Great Swamp" is present day Alewife

Sea level rise and storm surges will likely cause the Amelia Earhart Dam to be flanked and overtopped by mid-century

At 1% (100-yr):

- Flanked in 2045-2050
- Overtopped in 2055-2060

At 0.2% (500-yr):

- Flanked in 2030-2035
- Overtopped in 2040

Sea Level Rise (SLR) / Storm Surge (SS) Flooding

Percent probability of exceedance

	Overview	Energy	& Emissions	Water & Flooding		Air Quality	Trees & Nat. Ecol	logy	Materials & Was	te
0	City of Cambridge	utile	Envision Camb	oridge Climate and Envi	ronr	nent Working Group: Session 1	May 8, 2017 er	nvision.cam	ibridgema.gov	32

Improvements in air quality have accompanied national and regional efforts to reduce emissions from power plants and vehicles

- Ozone and particle pollution have decreased in the region, largely due to the phase out of coal-fired power plants and older diesel engines, as well as stricter emissions requirements for new vehicles
- Air quality improvements are largely driven by regulations set at the state and federal level
- Locally, transportation demand management strategies have also shifted commuters to modes with lower emissions, including electric vehicles
- Particulate matter from diesel trucks remains an issue, although this will continue to improve over time with changes in engine technology.

Trees and Natural Resources

- There are 21,890 trees and tree wells in Cambridge, which together with private trees providing a canopy that covers approximately 30% of the citywide land area.
- There is a maximum physical potential to increase tree canopy to cover another 35% of land area, although that figure cannot be fully achieved due to competing land uses and other factors.
- There is a significant difference in tree canopy coverage between neighborhoods; the City is targeting its tree planting efforts to address this disparity.
- Some areas are very densely developed with narrow sidewalks and little space around buildings, which impacts the potential to increase the tree canopy.

Source: City of Cambridge (tree canopy), MassGIS (roads, water, boundary)

Materials and Waste

- Cambridge continues to decrease waste to landfill and is studying the feasibility of Net Zero Waste
- Curbside compost pilot is proving to be tremendously popular and successful
- Solid waste disposal is attributable to 6% of citywide GHG emissions

In October 2015, the City expanded free weekly curbside pickup of food scraps to 5000 additional households on the Monday collection route

Source: City of Cambridge, Zero Waste Master Plan RFQ, 2016

Curbside Trash

*Includes DPW curbside + CHA buildings with city services only

Overview	Energy	& Emissions	Water & Flooding	Air Quality	Trees & Nat	t. Ecology	Materials & V	Waste
City of Cambridge	utile	Envision Cambr	ridge Climate and Enviro	nment Working Group: Session 1	May 8, 2017	envision.cam	bridgema.gov	35

Materials and Waste

Contaminated Sites

- Contaminated sites can complicate and/or increase the costs of redevelopment or reuse of parcels due to the presence or potential presence of hazardous substances, pollutants, or contaminants.
- Unlike some other communities, the presence of contamination has not been a deterrent to redevelopment given the high cost of land.

Source: MassDEP

Overview	Energy	& Emissions	Water & Flooding	Air Quality	Trees & Nat	. Ecology	Materials & V	Waste
City of Cambridge	utile	Envision Caml	bridge Climate and Enviro	onment Working Group: Session 1	May 8, 2017	envision.camb	oridgema.gov	36

Issues, Goals, and Opportunities

utile

1

THE LEVE

-

37

Methodology

To help generate a baseline set of issues, draft goals, and opportunities for the working group to discuss, in addition to drawing on the existing conditions analysis, the team synthesized takeaways from community engagement conducted to date.

Listening Phase (March-June 2016)

Mobile engagement station, 1 online and in-person survey, community workshops, & targeted focus groups. Community members voiced on opportunities and challenges for Cambridge across multiple topic areas.

Visioning Phase (April-July 2016) Mobile engagement station, 3 online and in-person surveys, 2 community visioning workshops, & 2 pop-up events. Community members voiced their opinion on the <u>core values</u> and <u>vision</u> for Cambridge.

Issues

- ^{1.} We need to reduce GHG emissions to net zero by around mid-century to avoid catastrophic climate change (staying below the 2° Celsius rise in global temperatures) while continuing to enable economic development
- ^{2.} Population growth, while presenting many benefits to the City of Cambridge, can also lead to an aggregate increase in GHG emissions from greater energy consumption (more buildings and vehicles) and increased solid waste generation, unless per capita reductions are large enough to offset this growth
- ^{3.} Meanwhile, we are already feeling the impacts of climate change:
 - Higher temperatures lead to increase in energy use and demand for cooling, resulting in greater GHG emissions and stress on the electric grid, as well as more need for outdoor shaded spaces.
 - More intense rainfall results in greater flooding and stormwater runoff, impacting the economy and the water quality of our waterways.
- ^{4.} These climate impacts exacerbate existing environmental (air quality), economic (energy affordability), and health (heat, indoor air quality) challenges that already disproportionally impact vulnerability populations/households
- ^{5.} In addition to their human impacts, rising sea levels and storm flooding may result in salinization of natural resource areas, damaging habitats as well as infrastructure and buildings

Draft Goals

Goal 1: Environmental Protection

Protect Cambridge's environment and natural resources, ensuring clean air, clean water, and responsible management of land and open space.

Goal 2: Carbon Neutral by 2050 [existing goal]

- Net Zero Emission Buildings by mid-century [existing target]
- Solar target: 60MW by 2020, 160MW by 2040 [existing target]

Goal 3: Resilience

Protect the lives and livelihoods of members of the Cambridge community that are at risk from climate change impacts and, in the process, enhance the well-being of the Cambridge community

Goal 4: Clean Energy Economy

Increase proportion of energy supply that comes from no and low carbon sources to catalyze the market for clean energy, reduce greenhouse gas emissions, and enhance community resilience

Goal 5: Integrated Stormwater Management

Implement best practices in stormwater management to reduce stormwater runoff, reduce Combined Sewer Overflows, and help clean waterways

Goal 6: Maximized Tree Canopy

Maximize the Cambridge's tree canopy across all neighborhoods to help manage stormwater, provide shade and cooling, and provide habitat protection

Goal 7: Zero Waste

Eliminate waste to landfills and help catalyze a circular economy

utile

Goal 8: Environmental Justice Ensure all communities benefit from the City's climate and environment initiatives

For Each Goal:

Does this goal adequately respond to the issues facing Cambridge? How could it be improved or enhanced?

Do you see this as a goal in and of itself or a means to an end in achieving other goals?

envision.cambridgema.gov

City's Existing Goals (Goal 0)

- Carbon neutral by 2050
- 70% reduction in emissions from the Cambridge building stock by 2040, including:
 - Energy Efficiency in Existing Buildings
 - Net Zero New Construction
 - State Renewable Energy
 - Renewable Energy generated in Cambridge
- Solar targets
 - 60MW by 2020
 - 160MW by 2040

Jointly-Revised Draft Goals [this slide to be completed in real time]

Base Goal	Revised Goal
Goal 1: Environmental Protection Protect Cambridge's environment and natural resources, ensuring clean air, clean water, and responsible management of land and open space.	
 Goal 2: Carbon Neutral by 2050 [existing goal] Net Zero Emission Buildings by mid-century [existing target] Solar target: 60MW by 2020, 160MW by 2040 [existing target] 	
Goal 3: Resilience Protect the lives and livelihoods of members of the Cambridge community that are at risk from climate change impacts and, in the process, enhance the well-being of the Cambridge community.	
Goal 4: Clean Energy Economy Increase proportion of energy supply that comes from no and low carbon sources to catalyze the market for clean energy, reduce greenhouse gas emissions, and enhance community resilience	
Goal 5: Integrated Stormwater Management Implement best practices in stormwater management to reduce stormwater runoff, reduce Combined Sewer Overflows, and help clean waterways	
Goal 6: Maximized Tree Canopy Maximize the Cambridge's tree canopy across all neighborhoods to help manage stormwater, provide shade and cooling, and provide habitat protection	
Goal 7: Zero Waste Eliminate waste to landfills and help catalyze a circular economy	
Goal 8: Environmental Justice Ensure all communities benefit from the City's climate and environment initiatives	

Confirming Goal Alignment with Values

(2)

Core Values	Livability	Diversity and Equity	Economic Opportunity	Sustainability & Resilience	Community Health & Wellbeing	Learning
Goal 1: Environmental Protection						
Goal 2: Carbon Neutral by 2050						
Goal 3: Resilience						
Goal 4: Clean Energy Economy						
Goal 5: Integrated Stormwater Management						
Goal 6: Maximized Tree Canopy						
Goal 7: Zero Waste						
Goal 8: Environmental Justice						

Framing Opportunities From Goals

Protect natural resources

Form a more resilient community

Keep moving toward **cleaner energy sources**

Reduce stormwater runoff and eliminate CSOs

Expand the tree canopy

Eliminate waste sent to landfills

Promote environmental justice

(27)

• Target underserved neighborhoods for tree planting program to expand the tree canopy and promote environmental justice (example)

Next Steps: Work Session 2 in June

- Review the City's existing environmental programs and policies in light of goals.
- Identify preliminary strategies to supplement the City's existing tools and advance goals.

Envision Cambridge

Climate & Environment Working Group: Session 1 May 8, 2017

ENVISION CAMBRIDGE

utile

City of Cambridge